A new terminal converging adaptive control for 6-degree-of-freedom parallel robotic manipulators with bounded control inputs

نویسندگان

  • Dongya Zhao
  • Sarah K. Spurgeon
  • Hao Liang
  • Shaoyuan Li
  • Quanmin Zhu
چکیده

In this study, a new terminal converging adaptive control approach with bounded control inputs is developed for the 6 degree of freedom (DOF) parallel robot manipulator. The non-smooth feedback control principle is combined with particular bounded functions to define both the control input and associated adaptive law. The Lyapunov method is used to present a stability analysis in order to prove that the error trajectories are semi-globally asymptotically stable. Numerical simulation results relating to a 6 DOF parallel robot are presented to validate the effectiveness of the proposed approach and to compare the performance obtained with other candidate control schemes. It is shown that the proposed scheme achieves more rapid error convergence and exhibits improved robustness whilst guaranteeing that the control signal remains within known bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators

Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...

متن کامل

Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...

متن کامل

Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study

In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...

متن کامل

A Robust Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators

In order to apply the terminal sliding mode control to robot manipulators, prior knowledge of the exact upper bound of parameter uncertainties, and external disturbances is necessary. However, this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot. To resolve this problem in robot control, we propose...

متن کامل

CONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY

A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Systems & Control Engineering

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2017